On the blow up phenomenon for the L-critical focusing Hartree equation in R

نویسندگان

  • Changxing Miao
  • Guixiang Xu
  • Lifeng Zhao
چکیده

For the defocusing with 2 < γ < min(4, d), J. Ginibre and G. Velo [6] proved the global well-posedness and scattering results in the energy space. Later, K. Nakanishi [26] made use of a new Morawetz estimate to obtain the similar results for the more general functions V (x). Recently, the authors proved the global wellposedness and scattering for the defocusing, energy critical Hartree equation, see [22], [23] and [24]. In this paper, we consider mainly the focusing Hartree equation in R3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case

We establish global existence, scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ norm less than those of the ground state in R× R, d ≥ 5.

متن کامل

Mass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1d

We consider the L-critical quintic focusing nonlinear Schrödinger equation (NLS) on R. It is well known that H solutions of the aforementioned equation blow-up in finite time. In higher dimensions, for H spherically symmetric blow-up solutions of the L-critical focusing NLS, there is a minimal amount of concentration of the L-norm (the mass of the ground state) at the origin. In this paper we p...

متن کامل

On Stability of Pseudo-conformal Blowup for L-critical Hartree Nls

We consider L-critical focusing nonlinear Schrödinger equations with Hartree type nonlinearity i∂tu = −∆u− ` Φ ∗ |u| ́ u in R, where Φ(x) is a perturbation of the convolution kernel |x|. Despite the lack of pseudo-conformal invariance for this equation, we prove the existence of critical mass finite-time blowup solutions u(t, x) that exhibit the pseudoconformal blowup rate L2x ∼ 1 |t| as t ր 0. ...

متن کامل

On the blow up phenomenon for the mass critical focusing Hartree equation in R

Here f(u) = λ ( V ∗|u|2 ) u, V (x) = |x|−γ , 0 < γ < d, and ∗ denotes the convolution in Rd. If λ > 0, we call the equation (1.1) defocusing; if λ < 0, we call it focusing. This equation describes the mean-field limit of many-body quantum systems; see, e.g., [6], [7] and [36]. An essential feature of Hartree equation is that the convolution kernel V (x) still retains the fine structure of micro...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008